🖥️
Sunil Notebook
Interview Preparation
  • 📒Notebook
    • What is this about ?
  • System Design
    • 💡Key Concepts
      • 🌐Scalability
      • 🌐Latency Vs Throughput
      • 🌐Databases
      • 🌐CAP Theorem
      • 🌐ACID Transactions
      • 🌐Rate limiting
      • 🌐API Design
      • 🌐Strong Vs eventual consistency
      • 🌐Distributed tracing
      • 🌐Synchronous Vs asynchronous Communication
      • 🌐Batch Processing Vs Stream Processing
      • 🌐Fault Tolerance
    • 💎Building Blocks
      • 🔹Message
      • 🔹Cache
      • 🔹Load Balancer Vs API Gateway
    • 🖥️Introduction to system design
    • ⏱️Step By Step Guide
    • ♨️Emerging Technologies in System Design
    • ☑️System design component checklist
      • 🔷Azure
      • 🔶AWS
      • ♦️Google Cloud
    • 🧊LinkedIn feed Design
    • 🏏Scalable Emoji Broadcasting System - Hotstar
    • 💲UPI Payment System Design
    • 📈Stock Broker System Design - Groww
    • 🧑‍🤝‍🧑Designing Instagram's Collaborative Content Creation - Close Friends Only
    • 🌳Vending Machines - Over the air Systems
    • Reference Links
  • DSA
    • Topics
      • Introduction
      • Algorithm analysis
        • Asymptotic Notation
        • Memory
      • Sorting
        • Selection Sort
        • Insertion Sort
        • Merge Sort
        • Quick Sort
        • Quick'3 Sort
        • Shell Sort
        • Shuffle sort
        • Heap Sort
        • Arrays.sort()
        • Key Points
        • Problems
          • Reorder Log files
      • Stacks and Queues
        • Stack Implementations
        • Queue Implementations
        • Priority Queues
        • Problems
          • Dijkstra's two-stack algorithm
      • Binary Search Tree
        • Left Leaning Red Black Tree
          • Java Implementations
        • 2-3 Tree
          • Search Operation - 2-3 Tree
          • Insert Operation - 2-3 Tree
        • Geometric Applications of BST
      • B-Tree
      • Graphs
        • Undirected Graphs
        • Directed Graphs
        • Topological Sort
      • Union Find
        • Dynamic Connectivity
        • Quick Find - Eager Approach
        • Quick Find - Lazy Approach
        • Defects
        • Weighted Quick Union
        • Quick Union + path comparison
        • Amortized Analysis
      • Convex Hull
      • Binary Heaps and Priority Queue
      • Hash Table vs Binary Search Trees
  • Concurrency and Multithreading
    • Introduction
    • Visibility Problem
    • Interview Questions
    • References
      • System design
  • Design Patterns
    • ℹ️Introduction
    • 💠Classification of patterns
    • 1️⃣Structural Design Patterns
      • Adapter Design Pattern
      • Bridge Design Pattern
      • Composite Design Pattern
      • Decorator Design Pattern
      • Facade Design Pattern
      • Flyweight Design Pattern
      • Private Class Data Design Pattern
      • Proxy Design Pattern
    • 2️⃣Behavioral Design Patterns
      • Chain Of Responsibility
      • Command Design Pattern
      • Interpreter Design Pattern
      • Iterator Design Pattern
      • Mediator Design Pattern
      • Memento Design Pattern
      • Null Object Design Pattern
      • Observer Design Pattern
      • State Design Pattern
      • Strategy Design Pattern
      • Template Design Pattern
    • 3️⃣Creational Design Patterns
      • Abstract Factory Design Pattern
      • Builder Design Pattern
      • Factory Method Design Pattern
      • Object Pool Design Pattern
      • Prototype Design Pattern
      • Singleton Design Pattern
    • Java Pass by Value or Pass by Reference
  • Designing Data-Intensive Applications - O'Reilly
    • Read Me
    • 1️⃣Reliable, Scalable, and Maintainable Applications
      • Reliability
      • Scalability
      • Maintainability
      • References
    • 2️⃣Data Models and Query Languages
      • Read me
      • References
    • Miscellaneous
  • Preparation Manual
    • Disclaimer
    • What is it all about?
    • About a bunch of links
    • Before you start preparing
    • Algorithms and Coding
    • Concurrency and Multithreading
    • Programming Language and Fundementals
    • Best Practices and Experience
  • Web Applications
    • Typescript Guidelines
  • Research Papers
    • Research Papers
      • Real-Time Data Infrastructure at Uber
      • Scaling Memcache at Facebook
  • Interview Questions
    • Important links for preparation
    • Google Interview Questions
      • L4
        • Phone Interview Questions
      • L3
        • Interview Questions
      • Phone Screen Questions
  • Miscellaneous
    • 90 Days Preparation Schedule
    • My Preparation for Tech Giants
    • Top Product Based Companies
  • Links
    • Github
    • LinkedIn
Powered by GitBook
On this page
  • Terminology
  • Graph API
  • Graph Utility
  • Degree
  • Max Degree
  • Average Degree
  • Self Loops

Was this helpful?

Edit on GitHub
  1. DSA
  2. Topics

Graphs

PreviousB-TreeNextUndirected Graphs

Last updated 3 years ago

Was this helpful?

Graph: A graph is a data structure that consists of the following two components: 1. A finite set of vertices also called as nodes. 2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered because (u, v) is not the same as (v, u) in case of a directed graph(di-graph). The pair of the form (u, v) indicates that there is an edge from vertex u to vertex v. The edges may contain weight/value/cost.

Terminology

  • Path: Sequence of vertices connected by edges.

  • Cycle: Path whose first and last vertices are the same.

  • Degree: Number of connected vertices for a node.

  • Euler Tour: Cycle that uses each edge exactly once.

  • Hamilton tour: Cycle that uses each vertex exactly once.

  • Biconnectivity: Vertex whose removal disconnects the graph.

Graph API

public class Graph{

    // Initialize the graph with v vertices
    Graph(int v);
    
    // Add an edge between vertex v and vertex w
    void addEdge(int v , int w);
    
    // Vertices adjacent to v
    Iteratable<Integer> adj(int v);
    
    // Number of Vertices
    int V();
    
    // Number of Edges
    int E();

}

Graph Utility

Degree

****Number of vertices connected to vvv

public static int degree(Graph G, int v){
    int degree = 0;
    for(int w : G.adj(v) ){
        degree++;
    } 
    return degree;
}

Max Degree

public static int maxDegree(Graph G){
    int max = 0;
    for( int v=0; v < G.V(); v++ ){
        max = Math.max(degree(G, v), max);
    } 
    return max;
}

Average Degree

public static double averageDegree(Graph G){
    return 2.0 * G.E() / G.V();
}

Self Loops

public static int countSelfLoops(Graph G){
    int count = 0;
    for(int v=0;v<G.V(); v++){
        for(int w: G.adj(v)){
            if(v == w) {
                count++; 
            }
        }
    }
    return count/2; // Each edge counted twice
}