🖥️
Sunil Notebook
Interview Preparation
  • 📒Notebook
    • What is this about ?
  • System Design
    • 💡Key Concepts
      • 🌐Scalability
      • 🌐Latency Vs Throughput
      • 🌐Databases
      • 🌐CAP Theorem
      • 🌐ACID Transactions
      • 🌐Rate limiting
      • 🌐API Design
      • 🌐Strong Vs eventual consistency
      • 🌐Distributed tracing
      • 🌐Synchronous Vs asynchronous Communication
      • 🌐Batch Processing Vs Stream Processing
      • 🌐Fault Tolerance
    • 💎Building Blocks
      • 🔹Message
      • 🔹Cache
      • 🔹Load Balancer Vs API Gateway
    • 🖥️Introduction to system design
    • ⏱️Step By Step Guide
    • ♨️Emerging Technologies in System Design
    • ☑️System design component checklist
      • 🔷Azure
      • 🔶AWS
      • ♦️Google Cloud
    • 🧊LinkedIn feed Design
    • 🏏Scalable Emoji Broadcasting System - Hotstar
    • 💲UPI Payment System Design
    • 📈Stock Broker System Design - Groww
    • 🧑‍🤝‍🧑Designing Instagram's Collaborative Content Creation - Close Friends Only
    • 🌳Vending Machines - Over the air Systems
    • Reference Links
  • DSA
    • Topics
      • Introduction
      • Algorithm analysis
        • Asymptotic Notation
        • Memory
      • Sorting
        • Selection Sort
        • Insertion Sort
        • Merge Sort
        • Quick Sort
        • Quick'3 Sort
        • Shell Sort
        • Shuffle sort
        • Heap Sort
        • Arrays.sort()
        • Key Points
        • Problems
          • Reorder Log files
      • Stacks and Queues
        • Stack Implementations
        • Queue Implementations
        • Priority Queues
        • Problems
          • Dijkstra's two-stack algorithm
      • Binary Search Tree
        • Left Leaning Red Black Tree
          • Java Implementations
        • 2-3 Tree
          • Search Operation - 2-3 Tree
          • Insert Operation - 2-3 Tree
        • Geometric Applications of BST
      • B-Tree
      • Graphs
        • Undirected Graphs
        • Directed Graphs
        • Topological Sort
      • Union Find
        • Dynamic Connectivity
        • Quick Find - Eager Approach
        • Quick Find - Lazy Approach
        • Defects
        • Weighted Quick Union
        • Quick Union + path comparison
        • Amortized Analysis
      • Convex Hull
      • Binary Heaps and Priority Queue
      • Hash Table vs Binary Search Trees
  • Concurrency and Multithreading
    • Introduction
    • Visibility Problem
    • Interview Questions
    • References
      • System design
  • Design Patterns
    • ℹ️Introduction
    • 💠Classification of patterns
    • 1️⃣Structural Design Patterns
      • Adapter Design Pattern
      • Bridge Design Pattern
      • Composite Design Pattern
      • Decorator Design Pattern
      • Facade Design Pattern
      • Flyweight Design Pattern
      • Private Class Data Design Pattern
      • Proxy Design Pattern
    • 2️⃣Behavioral Design Patterns
      • Chain Of Responsibility
      • Command Design Pattern
      • Interpreter Design Pattern
      • Iterator Design Pattern
      • Mediator Design Pattern
      • Memento Design Pattern
      • Null Object Design Pattern
      • Observer Design Pattern
      • State Design Pattern
      • Strategy Design Pattern
      • Template Design Pattern
    • 3️⃣Creational Design Patterns
      • Abstract Factory Design Pattern
      • Builder Design Pattern
      • Factory Method Design Pattern
      • Object Pool Design Pattern
      • Prototype Design Pattern
      • Singleton Design Pattern
    • Java Pass by Value or Pass by Reference
  • Designing Data-Intensive Applications - O'Reilly
    • Read Me
    • 1️⃣Reliable, Scalable, and Maintainable Applications
      • Reliability
      • Scalability
      • Maintainability
      • References
    • 2️⃣Data Models and Query Languages
      • Read me
      • References
    • Miscellaneous
  • Preparation Manual
    • Disclaimer
    • What is it all about?
    • About a bunch of links
    • Before you start preparing
    • Algorithms and Coding
    • Concurrency and Multithreading
    • Programming Language and Fundementals
    • Best Practices and Experience
  • Web Applications
    • Typescript Guidelines
  • Research Papers
    • Research Papers
      • Real-Time Data Infrastructure at Uber
      • Scaling Memcache at Facebook
  • Interview Questions
    • Important links for preparation
    • Google Interview Questions
      • L4
        • Phone Interview Questions
      • L3
        • Interview Questions
      • Phone Screen Questions
  • Miscellaneous
    • 90 Days Preparation Schedule
    • My Preparation for Tech Giants
    • Top Product Based Companies
  • Links
    • Github
    • LinkedIn
Powered by GitBook
On this page
  • Dynamic Connectivity
  • Modelling the Connections
  • Implementing Operations
  • Union Find Data Type - Java

Was this helpful?

Edit on GitHub
  1. DSA
  2. Topics
  3. Union Find

Dynamic Connectivity

PreviousUnion FindNextQuick Find - Eager Approach

Last updated 3 years ago

Was this helpful?

Dynamic Connectivity

Given a set of N objects.

  • Union command: connect two objects.

  • Find/connected query: is there a path connecting the two objects?

Modelling the Connections

We assume "is connected to" is an equivalence relation:

  • Reflexive: p is connected to p.

  • Symmetric: if p is connected to q, then q is connected to p.

  • Transitive: if p is connected to q and q is connected to r, then p is connected to

Connected components: Maximal set of objects that are mutually connected.

Implementing Operations

Find Query: Check if two objects are in the same component.

Union command: Replace components containing two objects with their union.

Union Find Data Type - Java

public class UF {

    // initialize union-find data structure with N objects (0 to N – 1)
    UF(int N);
    
    // add connection between p and q
    void union(int p, int q);
    
    // are p and q in the same component?
    boolean connected(int p, int q);
    
    // component identifier for p (0 to N – 1)
    int find(int p);
    
    // number of components
    int count();
}