šŸ–„ļø
Sunil Notebook
Interview Preparation
  • šŸ“’Notebook
    • What is this about ?
  • System Design
    • šŸ’”Key Concepts
      • 🌐Scalability
      • 🌐Latency Vs Throughput
      • 🌐Databases
      • 🌐CAP Theorem
      • 🌐ACID Transactions
      • 🌐Rate limiting
      • 🌐API Design
      • 🌐Strong Vs eventual consistency
      • 🌐Distributed tracing
      • 🌐Synchronous Vs asynchronous Communication
      • 🌐Batch Processing Vs Stream Processing
      • 🌐Fault Tolerance
    • šŸ’ŽBuilding Blocks
      • šŸ”¹Message
      • šŸ”¹Cache
      • šŸ”¹Load Balancer Vs API Gateway
    • šŸ–„ļøIntroduction to system design
    • ā±ļøStep By Step Guide
    • ā™ØļøEmerging Technologies in System Design
    • ā˜‘ļøSystem design component checklist
      • šŸ”·Azure
      • šŸ”¶AWS
      • ā™¦ļøGoogle Cloud
    • 🧊LinkedIn feed Design
    • šŸScalable Emoji Broadcasting System - Hotstar
    • šŸ’²UPI Payment System Design
    • šŸ“ˆStock Broker System Design - Groww
    • šŸ§‘ā€šŸ¤ā€šŸ§‘Designing Instagram's Collaborative Content Creation - Close Friends Only
    • 🌳Vending Machines - Over the air Systems
    • Reference Links
  • DSA
    • Topics
      • Introduction
      • Algorithm analysis
        • Asymptotic Notation
        • Memory
      • Sorting
        • Selection Sort
        • Insertion Sort
        • Merge Sort
        • Quick Sort
        • Quick'3 Sort
        • Shell Sort
        • Shuffle sort
        • Heap Sort
        • Arrays.sort()
        • Key Points
        • Problems
          • Reorder Log files
      • Stacks and Queues
        • Stack Implementations
        • Queue Implementations
        • Priority Queues
        • Problems
          • Dijkstra's two-stack algorithm
      • Binary Search Tree
        • Left Leaning Red Black Tree
          • Java Implementations
        • 2-3 Tree
          • Search Operation - 2-3 Tree
          • Insert Operation - 2-3 Tree
        • Geometric Applications of BST
      • B-Tree
      • Graphs
        • Undirected Graphs
        • Directed Graphs
        • Topological Sort
      • Union Find
        • Dynamic Connectivity
        • Quick Find - Eager Approach
        • Quick Find - Lazy Approach
        • Defects
        • Weighted Quick Union
        • Quick Union + path comparison
        • Amortized Analysis
      • Convex Hull
      • Binary Heaps and Priority Queue
      • Hash Table vs Binary Search Trees
  • Concurrency and Multithreading
    • Introduction
    • Visibility Problem
    • Interview Questions
    • References
      • System design
  • Design Patterns
    • ā„¹ļøIntroduction
    • šŸ’ Classification of patterns
    • 1ļøāƒ£Structural Design Patterns
      • Adapter Design Pattern
      • Bridge Design Pattern
      • Composite Design Pattern
      • Decorator Design Pattern
      • Facade Design Pattern
      • Flyweight Design Pattern
      • Private Class Data Design Pattern
      • Proxy Design Pattern
    • 2ļøāƒ£Behavioral Design Patterns
      • Chain Of Responsibility
      • Command Design Pattern
      • Interpreter Design Pattern
      • Iterator Design Pattern
      • Mediator Design Pattern
      • Memento Design Pattern
      • Null Object Design Pattern
      • Observer Design Pattern
      • State Design Pattern
      • Strategy Design Pattern
      • Template Design Pattern
    • 3ļøāƒ£Creational Design Patterns
      • Abstract Factory Design Pattern
      • Builder Design Pattern
      • Factory Method Design Pattern
      • Object Pool Design Pattern
      • Prototype Design Pattern
      • Singleton Design Pattern
    • Java Pass by Value or Pass by Reference
  • Designing Data-Intensive Applications - O'Reilly
    • Read Me
    • 1ļøāƒ£Reliable, Scalable, and Maintainable Applications
      • Reliability
      • Scalability
      • Maintainability
      • References
    • 2ļøāƒ£Data Models and Query Languages
      • Read me
      • References
    • Miscellaneous
  • Preparation Manual
    • Disclaimer
    • What is it all about?
    • About a bunch of links
    • Before you start preparing
    • Algorithms and Coding
    • Concurrency and Multithreading
    • Programming Language and Fundementals
    • Best Practices and Experience
  • Web Applications
    • Typescript Guidelines
  • Research Papers
    • Research Papers
      • Real-Time Data Infrastructure at Uber
      • Scaling Memcache at Facebook
  • Interview Questions
    • Important links for preparation
    • Google Interview Questions
      • L4
        • Phone Interview Questions
      • L3
        • Interview Questions
      • Phone Screen Questions
  • Miscellaneous
    • 90 Days Preparation Schedule
    • My Preparation for Tech Giants
    • Top Product Based Companies
  • Links
    • Github
    • LinkedIn
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. DSA
  2. Topics
  3. Sorting

Merge Sort

Java Implementation

/*
==========================================================
Generic Implementation of Merge sort
Input: Used Comparable interface as input

Input: [ 3, 0, 5, 2, 1, 0, 0, 0, 4 ]
Output: [ 0, 0, 0, 0, 1, 2, 3, 4, 5 ]

Input: [ "three", "0", "five", "2", "one", "seven", "4" ]
Output: [ "0", "2", "4", "five", "one", "seven", "three" ]

==========================================================
*/

public static class mergeSort {
    public void merge(Comparable[] a, int low, int mid, int high) {
      int n1 = mid - low + 1;
      int n2 = high - mid;

      Comparable[] arr1 = new Comparable[n1];
      Comparable[] arr2 = new Comparable[n2];

      for (int i = 0; i < n1; i++) {
        arr1[i] = a[low + i];
      }

      for (int i = 0; i < n2; i++) {
        arr2[i] = a[mid + i + 1];
      }

      int i = 0, j = 0, k = low;
      while (i < n1 && j < n2) {
        if (compare(arr1[i], arr2[j])) {
          a[k] = arr1[i];
          i++;
        } else {
          a[k] = arr2[j];
          j++;
        }
        k++;
      }

      while (i < n1) {
        a[k] = arr1[i];
        i++;
        k++;
      }
      while (j < n2) {
        a[k] = arr2[j];
        j++;
        k++;
      }
    }

    public void sort(Comparable[] a, int low, int high) {
      if (low < high) {
        int mid = low + (high - low) / 2;
        sort(a, low, mid);
        sort(a, mid + 1, high);
        merge(a, low, mid, high);
      }
    }

    private boolean compare(Comparable comparable, Comparable comparable1) {
      return comparable.compareTo(comparable1) < 0;
    }
  }

Properties

  • Stable

  • Īø(n)\theta(n)Īø(n) extra space for arrays

  • Īø(log(n))\theta(log(n))Īø(log(n)) extra space for linked lists

  • Īø(nāˆ—log(n))\theta(n * log(n))Īø(nāˆ—log(n))time

  • Not adaptive

  • Does not require random access to data

PreviousInsertion SortNextQuick Sort

Last updated 3 years ago

Was this helpful?